Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[*N*-(8-quinolyl)pyridine-2-carboxamidato]iron(III) perchlorate monohydrate

Zhongfang Li,* Suwen Wang, Qian Zhang and Xianjin Yu

College of Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China Correspondence e-mail: zhfli_sdut@yahoo.com.cn

Received 2 October 2007; accepted 3 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.054; wR factor = 0.140; data-to-parameter ratio = 13.5.

The asymmetric unit of the title compound, $[Fe(C_{15}H_{10}-N_3O)_2]ClO_4 \cdot H_2O$, contains one iron(III) cation chelated by two *N*-(8-naphthyl)-2-pyridine-2-carboxamidate ligands *via* six N atoms, exhibiting an octahedral coordination geometry, a perchlorate anion and a water molecule. The Fe–N bond lengths are in the range 1.880 (3)–1.972 (3) Å. Each ligand is planar (r.m.s. deviations = 0.0314 and 0.0282 Å). The dihedral angle between the two ligand planes is 86.55 (1)°. There is a weak intermolecular hydrogen bond between the water and the perchlorate groups.

Related literature

For related literature, see: Li *et al.* (1993); Go *et al.* (2004); An *et al.* (2000); Baroni *et al.* (1996); Hundal *et al.* (2002).

Experimental

Crystal data

Data collection

Bruker APEXII CCD area-detector	13425 measured reflections
diffractometer	5559 independent reflections
Absorption correction: multi-scan	3729 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.022$
$T_{\min} = 0.763, \ T_{\max} = 0.865$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of
$wR(F^2) = 0.140$	independent and constrained
S = 1.00	refinement
5559 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
413 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H1W \cdots O4^{i}$	0.84 (3)	2.25 (4)	2.934 (12)	139 (4)
Symmetry code: (i) $-x$	+1, -v + 1, -z	z + 1.		

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2152).

References

- An, J., Chen, Z. D., Bian, J., Chen, J. T., Wang, S. X., Gao, S. & Xu, G. X. (2000). *Inorg. Chim. Acta*, **299**, 28–30.
- Baroni, T. E., Heppert, J. A., Hodel, R. R., Kingsborough, R. P., Morton, M. D., Pheingold, A. L. & Yap, G. P. A. (1996). *Organometallics*, **15**, 4872–4874.
- Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Go, Y. B., Wang, X. Q. & Anokhina, E. V. (2004). *Inorg. Chem.* 43, 5360–5364. Hundal, G., Hundal, M. S., Obrai, S., Poonia, N. S. & Kumar, S. (2002). *Inorg.*
- *Chem.* **41**, 2077–2086.
- Li, M. X., Xu, Z. & You, X. Z. (1993). Polyhedron, **12**, 921–923.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2781 [doi:10.1107/S1600536807048556]

Bis[N-(8-quinolyl)pyridine-2-carboxamidato]iron(III) perchlorate monohydrate

Z. Li, S. Wang, Q. Zhang and X. Yu

Comment

Complexes containing carbonyl amine (organic amide) ligands have been the interest of chemists due to their potential applications, such as in catalysis, optics, information storage, medicine, molecular electrochemistry, biochemistry and biological pharmaceuticals (Li *et al.*, 1993; Go *et al.*, 2004). Thus far, N-containing aromatic carbonyl amines have been widely used in dye intermediates, organic synthesis, sensitization materials, functional pigments, adipiodone and acetrizoic acid (An *et al.*, 2000). Pyridine carbonyl amine is also a good ligand in coordination chemistry due to its strong coordination ability and versatile coordination modes, so much attention has been paid to it in recent years (Baroni *et al.*, 1996; Hundal *et al.*, 2002). Here we report the new title complex.

The title compound contains an iron(III) cation chelated by two 2-pyridinecarbonyl-8-aminoquinoline ligands *via* six N atoms, exhibiting octahedral geometry around the central iron ion (Fig. 1). The Fe—N bond length are in the range 1.880 (3)–1.972 (3) Å. Each ligand is planar (r.m.s. deviations 0.0314 and 0.0282 Å). The dihedral angle between the two ligand planes is 86.55 (1)°. There is a weak intermolecular hydrogen bond between water and perchlorate, contributing to the packing.

Experimental

A mixture of iron trichloride (0.1 mmol) and 2-pyridinecarbonyl-8-aminoquinoline (0.2 mmol) in 25 ml me thanol was refluxed for 2 h and filtered. The filtrate was evaporated naturally in an open flask. Green crystals were obtained after one week in a yield of 12%. Anal. Calc. for $C_{30}H_{22}$ ClFeN₆O₇: C 53.73, H 2.99, N 12.54%; Found: 53.68, H 3.02, N 12.51%.

Refinement

The H atoms of the water molecule were located in a difference density map and were refined with distance restraints [H···H = 1.38 (2) Å and O—H = 0.82 (2) Å] and with $U_{iso}(H) = 0.08 \text{ Å}^2$. All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title structure, drawn with 30% probability displacement ellipsoids.

Bis[N-(8-quinolyl)pyridine-2-carboxamidato]iron(III) perchlorate monohydrate

Crystal data	
[Fe(C ₁₅ H ₁₀ N ₃ O) ₂]ClO ₄ ·H ₂ O	Z = 2
$M_r = 669.84$	$F_{000} = 686$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.552 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.2452 (10) Å	Cell parameters from 5559 reflections
b = 11.944 (2) Å	$\theta = 3.1 - 26.0^{\circ}$
c = 13.0523 (10) Å	$\mu = 0.68 \text{ mm}^{-1}$
$\alpha = 95.807 \ (5)^{\circ}$	T = 293 (2) K
$\beta = 90.462 \ (1)^{\circ}$	Block, green
$\gamma = 91.615 (5)^{\circ}$	$0.42\times0.26\times0.22~mm$
$V = 1433.3 (3) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector diffractometer	5559 independent reflections
Radiation source: fine-focus sealed tube	3729 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = 0 \rightarrow 11$
$T_{\min} = 0.763, \ T_{\max} = 0.865$	$k = -14 \rightarrow 14$
13425 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of

independent and constrained refinement

$- R(E^2) = 0.140$	$w = 1/[\sigma^2(F_0^2) + (0.092P)^2]$		
WR(F) = 0.140	where $P = (F_0^2 + 2F_c^2)/3$		
<i>S</i> = 1.00	$(\Delta/\sigma)_{max} < 0.001$		
5559 reflections	$\Delta \rho_{max} = 0.50 \text{ e } \text{\AA}^{-3}$		
413 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$		
3 restraints	Extinction correction: none		
Duine and a start aits 1 and in a start start in a start diaset			

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.7506 (5)	0.3112 (4)	0.3721 (3)	0.0659 (10)
H1A	0.7130	0.3810	0.3939	0.079*
C2	0.8893 (6)	0.2844 (5)	0.4060 (4)	0.0892 (15)
H2A	0.9414	0.3358	0.4515	0.107*
C3	0.9464 (5)	0.1862 (5)	0.3735 (4)	0.0820 (13)
НЗА	1.0389	0.1704	0.3954	0.098*
C4	0.8682 (5)	0.1051 (4)	0.3056 (3)	0.0654 (11)
C5	0.9158 (5)	-0.0009 (5)	0.2647 (4)	0.0792 (13)
H5A	1.0073	-0.0234	0.2826	0.095*
C6	0.8324 (6)	-0.0699 (4)	0.2007 (4)	0.0796 (14)
H6A	0.8677	-0.1392	0.1751	0.096*
C7	0.6920 (5)	-0.0408 (3)	0.1706 (3)	0.0628 (10)
H7A	0.6361	-0.0905	0.1261	0.075*
C8	0.6395 (4)	0.0610 (3)	0.2073 (3)	0.0499 (8)
C9	0.7297 (4)	0.1362 (3)	0.2760 (3)	0.0493 (8)
C10	0.3957 (4)	0.0540 (3)	0.1333 (3)	0.0565 (9)
C11	0.2748 (4)	0.1304 (3)	0.1266 (3)	0.0558 (9)
C12	0.1473 (5)	0.1020 (4)	0.0708 (4)	0.0775 (13)
H12A	0.1345	0.0310	0.0349	0.093*
C13	0.0417 (6)	0.1792 (5)	0.0691 (5)	0.0886 (15)
H13A	-0.0438	0.1605	0.0325	0.106*
C14	0.0606 (5)	0.2840 (4)	0.1211 (4)	0.0719 (11)
H14A	-0.0106	0.3373	0.1190	0.086*

C15	0.1869 (4)	0.3094 (3)	0.1767 (3)	0.0549 (8)
H15A	0.1990	0.3798	0.2139	0.066*
C16	0.3662 (4)	0.1163 (4)	0.4101 (3)	0.0652 (10)
H16A	0.3955	0.0529	0.3692	0.078*
C17	0.2985 (5)	0.1049 (5)	0.5041 (4)	0.0806 (14)
H17A	0.2844	0.0338	0.5262	0.097*
C18	0.2533 (5)	0.1969 (5)	0.5631 (3)	0.0823 (14)
H18A	0.2067	0.1890	0.6249	0.099*
C19	0.2761 (4)	0.3008 (4)	0.5316 (3)	0.0672 (11)
H19A	0.2458	0.3645	0.5717	0.081*
220	0.3443 (4)	0.3107 (3)	0.4402 (2)	0.0523 (8)
221	0.3797 (4)	0.4214 (3)	0.4006 (3)	0.0527 (8)
222	0.5049 (4)	0.4906 (3)	0.2525 (3)	0.0466 (7)
223	0.4968 (5)	0.6065 (3)	0.2745 (3)	0.0617 (10)
423A	0.4490	0.6370	0.3327	0.074*
224	0.5625 (5)	0.6769 (3)	0.2070 (4)	0.0744 (12)
124A	0.5569	0.7544	0.2219	0.089*
225	0.6329 (5)	0.6370 (3)	0.1220 (4)	0.0709 (12)
125A	0.6763	0.6868	0.0804	0.085*
226	0.6412 (4)	0.5202 (3)	0.0953 (3)	0.0583 (9)
227	0.7120 (4)	0.4666 (4)	0.0094 (3)	0.0629 (10)
127A	0.7621	0.5101	-0.0346	0.075*
228	0.7083 (4)	0.3521 (4)	-0.0105 (3)	0.0625 (10)
128A	0.7535	0.3176	-0.0683	0.075*
229	0.6363 (4)	0.2882 (3)	0.0567 (3)	0.0528 (8)
129A	0.6335	0.2103	0.0423	0.063*
230	0.5729 (4)	0.4481 (3)	0.1621 (3)	0.0467 (7)
211	0.98024 (13)	0.38673 (11)	0.75442 (12)	0.0874 (4)
e1	0.48026 (5)	0.25820 (4)	0.25203 (3)	0.03984 (17)
J1	0.6730 (3)	0.2379 (2)	0.3095 (2)	0.0500(7)
12	0.5060 (3)	0.1068 (2)	0.1892 (2)	0.0493 (7)
13	0.2932 (3)	0.2345 (2)	0.1783 (2)	0.0439 (6)
14	0.3889 (3)	0.2191 (2)	0.3789 (2)	0.0478 (6)
15	0.4503 (3)	0.4062 (2)	0.3099 (2)	0.0448 (6)
16	0.5710 (3)	0.3329 (2)	0.1409 (2)	0.0437 (6)
01	0.3877 (4)	-0.0438 (2)	0.0916 (3)	0.0865 (10)
02	0.3503 (4)	0.5108 (3)	0.4477 (2)	0.0778 (8)
)3	1.0848 (7)	0.4603 (6)	0.7251 (5)	0.166 (2)
)4	0.9827 (10)	0.2839 (6)	0.6934 (8)	0.227 (4)
)5	1.0194 (7)	0.3498 (9)	0.8547 (6)	0.217 (4)
)6	0.8419 (5)	0.4240 (4)	0.7667 (4)	0.1305 (16)
D1W	0.2728 (13)	0.8676 (9)	0.3076 (14)	0.131 (3)
41W	0.205 (4)	0.839 (4)	0.339 (3)	0.080*
	0.0(5.(5)	0.94(.(5))	0.2461(12)	0.020*

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}

C1	0.065 (2)	0.067 (2)	0.062 (2)	0.0114 (19)	-0.0079 (19)	-0.0116 (19)
C2	0.071 (3)	0.103 (4)	0.089 (4)	0.007 (3)	-0.023 (2)	-0.015 (3)
C3	0.065 (3)	0.101 (4)	0.081 (3)	0.016 (3)	-0.013 (2)	0.010 (3)
C4	0.068 (2)	0.073 (3)	0.061 (2)	0.024 (2)	0.0157 (19)	0.029 (2)
C5	0.072 (3)	0.082 (3)	0.089 (3)	0.028 (2)	0.013 (2)	0.026 (3)
C6	0.098 (4)	0.065 (3)	0.081 (3)	0.030 (3)	0.033 (3)	0.023 (2)
C7	0.080 (3)	0.0421 (18)	0.068 (2)	0.0120 (17)	0.019 (2)	0.0127 (17)
C8	0.065 (2)	0.0432 (17)	0.0430 (18)	0.0080 (15)	0.0105 (15)	0.0080 (14)
C9	0.059 (2)	0.0482 (18)	0.0431 (18)	0.0130 (15)	0.0152 (14)	0.0123 (14)
C10	0.069 (2)	0.0368 (17)	0.061 (2)	-0.0049 (16)	0.0072 (18)	-0.0056 (15)
C11	0.063 (2)	0.0456 (18)	0.057 (2)	-0.0090 (16)	0.0050 (16)	-0.0014 (15)
C12	0.074 (3)	0.067 (3)	0.086 (3)	-0.015 (2)	-0.007 (2)	-0.016 (2)
C13	0.069 (3)	0.087 (3)	0.106 (4)	-0.001 (3)	-0.019 (3)	-0.005 (3)
C14	0.058 (2)	0.080 (3)	0.078 (3)	0.005 (2)	-0.007 (2)	0.010 (2)
C15	0.060 (2)	0.053 (2)	0.053 (2)	0.0063 (16)	0.0018 (16)	0.0094 (16)
C16	0.063 (2)	0.078 (3)	0.058 (2)	0.003 (2)	0.0010 (18)	0.023 (2)
C17	0.082 (3)	0.101 (4)	0.064 (3)	-0.007 (3)	0.007 (2)	0.035 (3)
C18	0.075 (3)	0.128 (5)	0.045 (2)	-0.004 (3)	0.014 (2)	0.016 (3)
C19	0.064 (2)	0.096 (3)	0.041 (2)	0.005 (2)	0.0107 (16)	0.001 (2)
C20	0.0500 (19)	0.072 (2)	0.0333 (16)	0.0063 (16)	-0.0027 (13)	-0.0014 (15)
C21	0.055 (2)	0.057 (2)	0.0434 (18)	0.0195 (16)	-0.0027 (15)	-0.0150 (15)
C22	0.0518 (19)	0.0366 (16)	0.0495 (19)	0.0031 (13)	-0.0073 (14)	-0.0048 (13)
C23	0.070 (2)	0.0432 (18)	0.069 (3)	0.0068 (17)	-0.0058 (19)	-0.0076 (17)
C24	0.086 (3)	0.0384 (19)	0.099 (4)	-0.0039 (19)	-0.010 (3)	0.010 (2)
C25	0.075 (3)	0.051 (2)	0.088 (3)	-0.015 (2)	-0.008 (2)	0.021 (2)
C26	0.054 (2)	0.053 (2)	0.069 (2)	-0.0122 (17)	-0.0141 (17)	0.0205 (18)
C27	0.056 (2)	0.079 (3)	0.057 (2)	-0.0057 (19)	0.0038 (17)	0.027 (2)
C28	0.058 (2)	0.081 (3)	0.050 (2)	0.0023 (19)	0.0108 (16)	0.0108 (19)
C29	0.055 (2)	0.054 (2)	0.0493 (19)	0.0042 (15)	0.0015 (15)	0.0044 (16)
C30	0.0432 (17)	0.0452 (17)	0.0511 (19)	-0.0048 (14)	-0.0085 (14)	0.0033 (14)
Cl1	0.0700 (7)	0.0850 (8)	0.1068 (10)	0.0213 (6)	0.0178 (6)	0.0009 (7)
Fe1	0.0500 (3)	0.0338 (2)	0.0350 (3)	0.00393 (17)	0.00660 (17)	-0.00136 (17)
N1	0.0540 (16)	0.0532 (16)	0.0425 (15)	-0.0015 (13)	0.0048 (12)	0.0040 (12)
N2	0.0642 (18)	0.0317 (13)	0.0509 (16)	0.0042 (12)	0.0100 (13)	-0.0018 (11)
N3	0.0504 (15)	0.0390 (13)	0.0419 (14)	-0.0029 (11)	0.0076 (11)	0.0028 (11)
N4	0.0561 (16)	0.0530 (16)	0.0354 (14)	0.0044 (13)	0.0022 (11)	0.0096 (12)
N5	0.0513 (16)	0.0417 (14)	0.0408 (14)	0.0076 (12)	0.0022 (11)	-0.0013 (11)
N6	0.0530 (15)	0.0378 (13)	0.0392 (14)	-0.0006 (11)	0.0033 (11)	-0.0011 (11)
01	0.100 (2)	0.0401 (14)	0.113 (3)	-0.0018 (15)	-0.0040 (19)	-0.0202 (15)
02	0.099 (2)	0.0683 (18)	0.0624 (17)	0.0251 (15)	0.0108 (15)	-0.0191 (14)
O3	0.149 (5)	0.175 (6)	0.180 (6)	-0.043 (4)	0.034 (4)	0.052 (5)
O4	0.264 (9)	0.114 (5)	0.294 (10)	0.041 (5)	0.111 (7)	-0.046 (5)
05	0.143 (5)	0.369 (12)	0.157 (6)	0.035 (6)	0.007 (4)	0.110 (7)
O6	0.107 (3)	0.134 (4)	0.157 (4)	0.057 (3)	0.024 (3)	0.027 (3)
O1W	0.188 (9)	0.117 (6)	0.088 (6)	0.054 (6)	0.041 (5)	-0.008 (5)
Geometric para	meters (Å, °)					
C1—N1		1.327 (5)	С18—Н	[18A	0.930	

C1—C2	1.410 (6)	C19—C20	1.368 (5)
C1—H1A	0.930	C19—H19A	0.930
C2—C3	1.332 (7)	C20—N4	1.363 (5)
C2—H2A	0.930	C20—C21	1.496 (6)
C3—C4	1.422 (7)	C21—O2	1.215 (4)
С3—НЗА	0.930	C21—N5	1.356 (4)
C4—C5	1.407 (7)	C22—C23	1.389 (5)
C4—C9	1.406 (6)	C22—C30	1.398 (5)
C5—C6	1.336 (8)	C22—N5	1.400 (4)
С5—Н5А	0.930	C23—C24	1.408 (6)
C6—C7	1.416 (7)	С23—Н23А	0.930
С6—Н6А	0.930	C24—C25	1.343 (7)
С7—С8	1.365 (5)	C24—H24A	0.930
C7—H7A	0.930	C25—C26	1.408 (6)
C8—N2	1.392 (5)	C25—H25A	0.930
C8—C9	1.445 (5)	C26—C27	1.409 (6)
C9—N1	1.368 (5)	C26—C30	1.424 (5)
C10—O1	1.239 (4)	C27—C28	1.366 (6)
C10—N2	1.352 (5)	С27—Н27А	0.930
C10—C11	1.470 (6)	C28—C29	1.381 (5)
C11—N3	1.359 (4)	C28—H28A	0.930
C11—C12	1.396 (6)	C29—N6	1.330 (5)
C12—C13	1.363 (7)	C29—H29A	0.930
C12—H12A	0.930	C30—N6	1.376 (4)
C13—C14	1.368 (7)	Cl1—O3	1.371 (5)
C13—H13A	0.930	Cl1—O6	1.372 (4)
C14—C15	1.380 (6)	Cl1—O4	1.395 (7)
C14—H14A	0.930	Cl1—O5	1.469 (7)
C15—N3	1.349 (5)	Fe1—N5	1.880 (3)
C15—H15A	0.930	Fe1—N2	1.930 (3)
C16—N4	1.343 (5)	Fe1—N1	1.959 (3)
C16—C17	1.400 (6)	Fe1—N4	1.958 (3)
C16—H16A	0.930	Fe1—N6	1.960 (3)
C17—C18	1.355 (8)	Fe1—N3	1.972 (3)
C17—H17A	0.930	O1W—H1W	0.84 (3)
C18—C19	1.357 (7)	O1W—H2W	0.82 (3)
N1—C1—C2	120.6 (4)	C30—C22—N5	113.1 (3)
N1—C1—H1A	119.7	C22—C23—C24	118.8 (4)
C2—C1—H1A	119.7	C22—C23—H23A	120.6
C3—C2—C1	120.5 (5)	C24—C23—H23A	120.6
С3—С2—Н2А	119.7	C25—C24—C23	122.9 (4)
C1—C2—H2A	119.7	C25—C24—H24A	118.6
C2—C3—C4	121.0 (4)	C23—C24—H24A	118.6
С2—С3—НЗА	119.5	C24—C25—C26	120.4 (4)
C4—C3—H3A	119.5	C24—C25—H25A	119.8
C5—C4—C9	117.4 (4)	C26—C25—H25A	119.8
C5—C4—C3	126.9 (4)	C27—C26—C25	126.5 (4)
C9—C4—C3	115.7 (4)	C27—C26—C30	116.3 (3)
C6—C5—C4	121.5 (5)	C25—C26—C30	117.2 (4)

С6—С5—Н5А	119.3	C28—C27—C26	121.2 (4)
C4—C5—H5A	119.3	С28—С27—Н27А	119.4
C5—C6—C7	122.1 (4)	С26—С27—Н27А	119.4
С5—С6—Н6А	119.0	C27—C28—C29	118.9 (4)
С7—С6—Н6А	119.0	C27—C28—H28A	120.5
C8—C7—C6	119.4 (4)	C29—C28—H28A	120.5
С8—С7—Н7А	120.3	N6—C29—C28	123.1 (4)
С6—С7—Н7А	120.3	N6—C29—H29A	118.5
C7—C8—N2	129.4 (4)	С28—С29—Н29А	118.5
C7—C8—C9	118.7 (4)	N6—C30—C22	116.6 (3)
N2—C8—C9	111.8 (3)	N6—C30—C26	121.5 (3)
N1—C9—C4	122.6 (4)	C22—C30—C26	121.9 (3)
N1—C9—C8	116.5 (3)	O3—Cl1—O6	118.2 (4)
C4—C9—C8	120.9 (3)	03—Cl1—O4	111.2 (5)
O1—C10—N2	128.8 (4)	O6—C11—O4	111.5 (5)
O1—C10—C11	120.9 (4)	O3—Cl1—O5	109.7 (5)
N2-C10-C11	110.3 (3)	06—Cl1—05	104.6 (4)
N3-C11-C12	120.0(4)	04-Cl1-05	99.8 (6)
N3-C11-C10	116.0 (3)	N5—Fe1—N2	178 08 (13)
C_{12} C_{11} C_{10}	124 1 (3)	N5—Fe1—N1	98 93 (12)
C13 - C12 - C11	119 5 (4)	N2—Fe1—N1	82.88 (12)
C_{13} C_{12} H_{12A}	120.3	N5—Fe1—N4	83.05 (12)
C11— $C12$ — $H12A$	120.3	N2—Fe1—N4	97 59 (12)
C_{12} C_{13} C_{14}	120.5	N1—Fe1—N4	91.11(12)
C12 - C13 - H13A	119.8	N5—Fe1—N6	83 80 (11)
C14— $C13$ — $H13A$	119.8	N2—Fe1—N6	95.61 (11)
C_{13} C_{14} C_{15}	118.9 (4)	N1—Fe1—N6	89.06 (12)
C_{13} C_{14} H_{14A}	120.5	N4—Fe1—N6	166 71 (11)
C15-C14-H14A	120.5	N5—Fe1—N3	97 17 (12)
N3-C15-C14	120.5	N_2 —Fe1—N3	81.03 (12)
N3_C15_H15A	119.3	N1_Fe1_N3	163.89 (12)
C_{14} C_{15} H_{15A}	119.3	NA_Fe1_N3	90.17 (11)
N4-C16-C17	119.9 (4)	N6 = Fe1 = N3	93 34 (11)
N4_C16_H16A	120.0	C1 - N1 - C9	1196(3)
C_{17} C_{16} H_{16A}	120.0	C1 - N1 - Fe1	117.0(3)
C_{18} C_{17} C_{16} C_{16}	120.2 (5)	C9 N1 Fe1	127.5(3)
$C_{18} - C_{17} - H_{17A}$	110.0	C10 - N2 - C8	115.1(2) 125.6(3)
C16-C17-H17A	119.9	C10 - N2 - Ee1	123.0(3) 118.8(2)
C10-C18-C17	119.9	$C_{10} = 102 = 101$	115.6(2)
$C_{19} - C_{18} - H_{18A}$	120.1	C15 - N3 - C11	119.0(2) 119.7(3)
C17 C18 H18A	120.1	$C_{15} = N_5 = C_{11}$	119.7(3)
$C_{1}^{18} - C_{19}^{19} - C_{20}^{20}$	120.1	C_{11} N3 F_{e1}	120.3(2) 113.8(2)
$C_{18} - C_{19} - H_{19A}$	119.2 (4)	C16 - N4 - C20	119.8(2)
$C_{10} - C_{10} - H_{10A}$	120.4	$C_{10} = N_{4} = C_{20}$	118.8(3) 128.1(3)
N4_C20_C19	120.4 122.0(4)	C_{10} N/ F_{e1}	120.1(3) 113.1(2)
N4-C20-C21	114 7 (3)	C21_N5_C22	126.6(3)
C19-C20-C21	123 4 (4)	C21N5Fe1	120.0(3) 118 4 (2)
$0^{2}-C^{2}-N^{5}$	126.8 (4)	C_{22} N5 Fe1	115.7(2)
02 - 021 - 103	120.0 (+)	C_{22} N5 C1	113.0(2) 118.0(2)
02 - 021 - 020	122.3 (3)	C27-1N0-C30	110.7 (3)

N5—C21—C20 C23—C22—C30 C23—C22—N5	110.7 (3) 118.8 (3) 128.1 (3)		C29—N6—Fe1 C30—N6—Fe1 H1W—O1W—H2W		129.5 (2) 111.4 (2) 109 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1W—H1W···O4 ⁱ Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$.		0.84 (3)	2.25 (4)	2.934 (12)	139 (4)

Fig. 1

